Neurociencia de Sistemas

- Clase 1. Introducción
- Clase 2. Registros extracelulares y Spike sorting.
- Clase 3. Procesado de información visual.
- Clase 4. Percepción y memoria
- Clase 5. Decodificación Teoría de la información.
- Clase 6. Electroencefalografía Análisis de tiempo-frecuencia y Wavelets.
- Clase 7. Potenciales evocados Análisis de ensayo único
- Clase 8. Dinámica no-lineal Sincronización.

Population analysis information theory or decoding

- Considers the information of a population as a whole.
- Single-trial analysis
- We can discover the stimulus features encoded by the population.
- We can evaluate which features of the spike trains encode relevant information.
- We can combine different signals (e.g. spikes and LFPs)

Are reaches confused with saccades? Is this an attention effect?

Can we predict movements?

Interim Conclusions

- We can reliably decode saccade and reach intentions from posterior parietal lobe cells.
- Saccade intentions are better decoded from LIP cells
 and reach intentions from PRR cells.
- LIP cells code for the contralateral field and PRR cells for both hemifields.
- · Results cannot be attributed to an attention effect.

There are two segregated (and interacting) areas, PRR and LIP coding for different movement intentions.

J. Neuroscience 2006

Decoding EEG responses

Can we tell each trial which picture was shown?

Clase 5. Decodificación – Teoría de la información.

Extracting information from neural populations: Information theory and decoding approaches Quian Quiroga R and Panzeri S. Nature Reviews Neuroscience. 10: 173-185; 2009.

Extracting information in spike time patterns with wavelets and information Theory. Vitor Lopes-dos-Santos, Stefano Panzeri, Christoph Kayser, Mathew E. Diamond, Rodrigo Quian Quiroga. Journal of Neurophysiology, 113: 1015-1033, 2015.

Principles of Neural Coding Rodrigo Quian Quiroga and Stefano Panzeri. CRC Taylor and Francis; 2013.

Rieke, Warland, de Ruyter van Steveninck and Bialek, Spikes (un clásico!)