Fernando César Lombardo

Profesor/a Asociado/a

Investigador Independiente - CONICET

Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Página web personal

Área de investigación:

  • Casimir effect
  • Decoherence and the quantum to classical transition
  • Geometric phases in quantum open systems


Effects arising from quantum fluctuations of charge and electromagnetic radiation, with emphasis on the study of quantum fluctuations and Casimir interactions between micro or macroscopic objects. In particular, we study the detailed quantitative behavior of the forces of Casimir in situations involving nontrivial geometries that have both conceptual interest and eventual applications in nanotechnology. The group also studies the influence of new materials, such as graphene, on Casimir interaction and quantum friction.

Nonadiabatic time-dependent external conditions can excite any quantum system. In the context of quantum field theory, the initial vacuum state generally evolves into an excited state with a nonvanishing number of particles. For example, time-dependent gravitational or electromagnetic fields can induce particle creation. The same phenomena take place in the presence of time-dependent environments, as, for instance, a cavity with time-dependent size or electromagnetic properties. The latter type of situations are broadly named “dynamical Casimir effect” (DCE).

Geometric phases (GPs) can be only observed in experiments carried out in a time scale slow enough to ignore nonadiabatic corrections, but rapid enough to avoid the destruction of the interference pattern by decoherence. The purpose of this plan is to study how GPs are affected by decoherence. Not only shall we analyze the effect of the environment on the GPs and their robustness against decoherence, but also under which conditions GPs can be measured.

Publicaciones seleccionadas